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Figure 1: From these unannotated images, we would like a recognition system to discover the concepts of house, grass, trees and sky, and
segment each image accordingly without any supervision.

Abstract
We present a new framework for semantic segmentation

without annotations via clustering. Off-the-shelf clustering
methods are limited to curated, single-label, and object-
centric images yet real-world data are dominantly uncu-
rated, multi-label, and scene-centric. We extend cluster-
ing from images to pixels and assign separate cluster mem-
bership to different instances within each image. How-
ever, solely relying on pixel-wise feature similarity fails
to learn high-level semantic concepts and overfits to low-
level visual cues. We propose a method to incorporate
geometric consistency as an inductive bias to learn in-
variance and equivariance for photometric and geometric
variations. With our novel learning objective, our frame-
work can learn high-level semantic concepts. Our method,
PiCIE (Pixel-level feature Clustering using Invariance and
Equivariance), is the first method capable of segmenting
both things and stuff categories without any hyperparam-
eter tuning or task-specific pre-processing. Our method
largely outperforms existing baselines on COCO [31] and
Cityscapes [8] with +17.5 Acc. and +4.5 mIoU. We show
that PiCIE gives a better initialization for standard su-
pervised training. The code is available at https://
github.com/janghyuncho/PiCIE.

1. Introduction

Unsupervised learning from a set of unlabelled images
has gained large popularity, but still is mostly limited to
single-class, object-centric images. Consider the images
shown in Figure 1 (top). Given a collection of these and
other unlabeled images, can a machine discover the con-
cepts of “grass”, “sky”, “house” and “trees” from each im-
age? Going further, can it identify where in each image each
concept appears, and segment it out?

A system that is capable of such unsupervised seman-
tic segmentation can then automatically discover classes of
objects with their precise boundaries, thus removing the
substantial cost of collecting and labeling datasets such as
COCO. It might even discover objects, materials and tex-
tures that an annotator may not know of a priori. This can
be particularly useful for analyzing novel domains: for ex-
ample, discovering new kinds of visual structures in satellite
imagery. The ability of the system to discover and segment
out unknown objects may also prove useful for robots trying
to manipulate these objects in the wild.

However, while unsupervised semantic segmentation
might be useful, it is also challenging. This is because
it combines the problem of class discovery with the chal-
lenge of exhaustive pixel labeling. Recent progress in self-
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Figure 2: PiCIE overview (left) and illustration of multi-view feature computation (right). More details in Sec. 3.3.

supervised and unsupervised learning suggests that recog-
nition systems can certainly discover image-level classes.
However, image-level labeling is easier since the network
can simply rely on just a few distinctive, stable features and
discard the rest of the image. For example, a recognition
system might be able to group all four images of Figure 1
together simply by detecting the presence of roof tiles in
each image, and ignoring everything else in the images. In
contrast, when segmenting the image, no pixel can be ig-
nored; whether it is a distinct object (thing) or a background
entity (stuff ), each and every pixel must be recognized and
accurately characterized in spite of potentially large intra-
class variation. As such, very little prior work has tried to
tackle this problem of discovering semantic segmentations,
with results limited to extremely coarse stuff segmentation.

In this paper, we take a step towards a practically use-
ful unsupervised semantic segmentation system: we present
an approach that is able to segment out all pixels, be they
things or stuff, at a much finer granularity than prior art.
Our approach is based on a straightforward objective that
codifies only two common-sense constraints. First, pixels
that have a similar appearance (i.e., they cluster together
in a learned feature space) should be labeled similarly and
vice versa. Second, pixel labels should be invariant to color
space transformations and equivariant to geometric trans-
formations. Our results show that using these two objectives
alone, we can train a ConvNet based semantic segmentation
system end-to-end without any labels.

We find that in spite of its simplicity, our approach far
outperforms prior work on this task, more than doubling
the accuracy of prior art (Figure 1, bottom). Our clustering-
based loss function (the first objective above) leads to a
much simpler and easier learning problem compared to
prior work, which instead tries to learn parametric pixel
classifiers. But the invariance and equivariance objectives
are key. They allow the convolutional network to connect
together pixels across scale, pose and color variation, some-
thing that prior systems are unable to do. This increased

robustness to invariance also allows our approach to ef-
fectively segment objects. We vindicate these intuitions
through an ablation study, where we find that each of these
contributes significant improvements in performance.

In sum, our results show that convolutional networks can
learn to not only discover image-level concepts, but also
semantically parse images without any supervision. This
opens the door to true large-scale discovery, where such a
trained network can automatically surface new classes of
objects, materials or textures from only an unlabeled, uncu-
rated dataset.

2. Related Work
Learning for clustering. Using deep neural networks to
learn cluster-friendly embedding space has been widely
studied [4, 5, 58, 57, 51, 14, 54]. DEC [51] and IDEC [14]
train embedding function by training autoencoder (AE) [49]
with reconstruction loss. DeepCluster and its variants [4,
5, 57] explicitly cluster the feature vectors of the entire
dataset using k-means [38] in order to assign pseudo-labels
to each data point, and then train an encoder network. All
these methods share a common philosophy that iterative op-
timization of clustering loss improves the feature space to
account for high-level visual similarity.

Apart from a representation learning perspective, there
have been a number of recent works that tackle classifica-
tion without labels by clustering data points [51, 18, 17, 23,
48, 55]. IIC [23], SeLa [55] and other works [48, 34, 60, 16]
maximize mutual information between two versions of soft
cluster assignments from a single image. Maximizing mu-
tual information prevents the network from falling into a
degenerate solution, but effectively enforces uniform dis-
tribution over clusters. Hence, unsupervised clustering is
expected to work only with well-balanced datasets such as
MNIST [28] and CIFAR [26]. Recent works [48, 55] tested
on larger-scale datasets such as ImageNet [9], still assume
a balanced set of single-class, object-centric images. Since
these methods do not explicitly perform clustering on data,

4322



they are called implicit clustering methods, contrary to ex-
plicit clustering [51, 14, 4, 5, 57, 52, 56, 42, 29].

Segmentation without labels. In clustering, each data
point is assumed to be semantically homogeneous. This
condition is invalid when images contain more than one se-
mantic class, such as scene-centric datasets [11, 31, 8, 15].
In fact, the majority of common images are not object-
centric, and therefore one cannot simply use off-the-shelf
clustering methods to obtain semantic understanding of an
arbitrary dataset. The problem reduces to semantic segmen-
tation by clustering pixel-level features.

There has been a number of recent attempts to seman-
tic segmentation without labels. IIC [23] simply extends
mutual information-based clustering to pixel-level repre-
sentation by outputting a probability map over image pix-
els. AC [37] uses an autoregressive model [47] to obtain
probabilities of pixels over categories, which then maxi-
mizes mutual information across two different “orderings”
of autoregression. Both works are limited to stuff cate-
gories due to the following two reasons. First, a mixture
of stuff and things categories introduces severe data imbal-
ance since there are far more stuff pixels than things pix-
els in real-world images. Such imbalance leads the mu-
tual information maximization to forcibly balance the size
of clusters and hence leads to noisy representation as ma-
jor classes (stuff categories) subsume minor classes (things
categories). Second, each method exploits the local spatial
consistency condition; a pixel needs to be semantically (and
visually) consistent with its neighboring pixels. This condi-
tion is only valid with stuff categories (e.g., sky) and not of-
ten true with things categories. Other methods [6, 2] based
on GANs [12, 25] learn to generate foreground masks of
a given image, but are limited to a single-category setting.
Our method is free from such assumptions and the results
show that our method is capable of segmenting both stuff
and things categories together well with uncurated images.

Equivariance learning. Equivariance learning has been
studied in object and keypoints tracking [36, 35, 1, 27], fa-
cial landmark detection [46, 50, 22], and keypoint detec-
tion [45, 59, 44, 43, 32]. The central idea in these works
is to train a model that predicts consistent key points be-
tween two images, with the underlying assumption that two
images share a common instance. This enables unsuper-
vised learning of semantically consistent and geometrically
structured representation learning. The general objective is
to directly minimize the L2 distance between two feature
vectors that correspond to the semantically equivalent loca-
tions on images. However, using MSE loss with clustering
is often sensitive to the choice of hyper-parameters, which is
often infeasible or prone to overfit in unsupervised setting.
Furthermore, individual feature vector may contain noisy
low-level visual cues which can overwhelm the gradient

flow during back-propagation. Our method instead learns
equivariance by enforcing consistent clustering assignments
between two views and hence only cluster-centered visual
cues affect the loss (detail in Sec. 3.3).

3. PiCIE
We are given an uncurated, unlabeled dataset of images

taken from some domain D. On this dataset, we want to
discover a set of visual classes C and learn a semantic seg-
mentation function fθ. When provided an unseen image
fromD, fθ should be able to assign every pixel a label from
the set of classes C.

We formulate this task of unsupervised image segmenta-
tion as pixel-level clustering, where every pixel is assigned
to a cluster. Clustering typically requires a good feature
space, but no such feature representation exists a priori. We
therefore propose an approach that learns the feature repre-
sentation jointly with the clustering. The overall pipeline
of PiCIE, which stands for Pixel-level feature Clustering
using Invariance and Equivariance, is depicted in Figure 2.
We describe our approach below.

3.1. A baseline clustering approach

We begin with prior work that learns a neural network
end-to-end for clustering unlabeled images into image-level
classes [4, 5, 51, 14, 53]. The key issue tackled in these pa-
pers is that clustering images into classes requires strong
feature representations, but for training strong feature rep-
resentations one needs class labels. To solve this chicken-
and-egg problem, the simplest solution is the one identi-
fied by DeepCluster [4]: alternate between clustering us-
ing the current feature representation, and use the cluster
labels as pseudo-labels to train the feature representation.
One can follow a similar strategy for the unsupervised se-
mantic segmentation task. The only difference is that we
need to use an embedding function fθ that produces a fea-
ture map, producing a feature vector for every pixel. The
classifier must also operate on individual pixels. One can
then alternate between clustering the pixel feature vectors
to get pixel pseudo-labels, and using these pseudo-labels to
train the pixel feature representation.

Concretely, suppose we have a set of unlabeled images
xi, i = 1, . . . , n. Suppose our embedding, denoted by fθ
produces a feature tensor fθ(x). This yields a feature rep-
resentation for every pixel p in the image x. Denote by
fθ(x)[p] this pixel-level feature representation. Denote by
gw(·) a classifier operating on these pixel feature vectors.
Then our baseline approach alternates between two steps:

1. Use the current embedding and k-means to cluster the
pixels in the dataset.

min
y,µ

∑

i,p

‖fθ(xi)[p]− µyip‖2 (1)
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where yip denotes the cluster labels of the p-th pixel in
the i-th image, and µk is the k-th cluster centroid. (We
use mini-batch k-means [39]).

2. Use the cluster labels to train a pixel classifier using
standard cross entropy loss.

min
θ,w

∑

i,p

LCE(gw(fθ(xi)[p]), yip) (2)

LCE(gw(fθ(xi)[p]), yip) = − log
esyip∑
k e

sk
(3)

where sk is the k-th class score output by the classifier
gw(fθ(xi, p)).

Given this baseline, we now propose the following mod-
ifications.

3.2. Non-parametric prototype-based classifiers

The DeepCluster inspired framework above uses a sepa-
rate, learned classifier. However, in the unsupervised setting
with constantly changing pseudo-labels, training a classifier
jointly with the feature representation can be challenging.
An insufficiently trained classifier can feed noisy gradients
into the feature extractor, resulting in noisy clusters for the
next training round.

We therefore propose to jettison the parametric pixel
classifier gw entirely. Instead, we label pixels based on their
distance to the centroids (“prototypes” [41]) estimated by k-
means. This results in the following changed objective.

min
θ

∑

i,p

Lclust(fθ(xi)[p], yip,µ) (4)

Lclust(fθ(xi)[p], yip,µ) = − log

(
e−d(fθ(xi)[p],µyip )∑
l e

−d(fθ(xi)[p],µl)

)

(5)

where d(·, ·) is cosine distance.

3.3. Invariance and Equivariance

Jointly learning the feature representation along with the
clustering as above will certainly produce clusters that are
compact in feature space, but there is no reason why these
clusters must be semantic. To get a semantic grouping of
pixels, we need to introduce an additional inductive bias.
What must this inductive bias be if we have no labels?

The inductive bias we introduce is invariance to photo-
metric transformations and equivariance to geometric trans-
formations: the labeling should not change if the pixel col-
ors are jittered slightly, and when the image is warped ge-
ometrically, the labeling should be warped similarly. Con-
cretely, if Y is the output semantic labeling for an image

Above: PiCIE pseudo-code. Notations consistent with Sec. 3.3.

x, and if P and G are photometric and geometric transfor-
mations respectively, then the output semantic labeling of a
transformed image G(P (x)) should be G(Y ).

Implementing this constraint in a joint clustering and
learning framework is tricky, since there isn’t a ground truth
label for each image. The pseudo-ground truth labeling is
itself derived from clustering, which is itself produced from
the feature maps, and as such itself sensitive to input trans-
formations. Invariance/equivariance in this case therefore
means two things: one, we should produce the same clusters
irrespective of the transformations, and two, the predicted
pixel labels should exhibit the desired in/equivariance.

3.3.1 Invariance to photometric transformations
We first address the question of invariance. For each im-
age xi in the dataset, we randomly sample two photomet-
ric transformations, P (1)

i and P (2)
i . This yields two feature

vectors for each pixel p in each image xi:

z
(1)
ip = fθ(P

(1)
i (xi))[p] (6)

z
(2)
ip = fθ(P

(2)
i (xi))[p] (7)

We then perform clustering separately in the two “views”
to get two sets of pseudo-labels and centroids:

y(1),µ(1) = argmin
y,µ

∑

i,p

‖z(1)ip − µyip‖2 (8)

y(2),µ(2) = argmin
y,µ

∑

i,p

‖z(2)ip − µyip‖2 (9)

Given these two sets of centroids and these two sets of
pseudo-labels, we use two sets of loss functions:

1. As before, we want the feature vectors to adhere to the
clustering labels. Now that we have two views, we
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want this to be true in each view:

Lwithin =
∑

i,p

Lclust(z(1)ip , y
(1)
ip ,µ

(1))

+ Lclust(z(2)ip , y
(2)
ip ,µ

(2)) (10)

2. Because we posit that the clustering should be invari-
ant to photometric transformations, we also want fea-
ture vectors from one view to match the cluster labels
and centroids of the other:

Lcross =
∑

i,p

Lclust(z(1)ip , y
(2)
ip ,µ

(2))

+ Lclust(z(2)ip , y
(1)
ip ,µ

(1)) (11)

This multi-view framework and the cross-view loss
achieve two things. First, by forcing feature vectors from
one transformation to adhere to labels produced by another,
it encourages the network to learn feature representations
that will be labeled identically irrespective of any photo-
metric transformations. Second, by forcing the same fea-
ture representation to be consistent with two different clus-
tering solutions, it encourages the two solutions themselves
to match, thus ensuring that the set of concepts discovered
by clustering is invariant to photometric transformations.

3.3.2 Equivariance to geometric transformations
A house and a zoomed-in version of the house should be
labeled similarly, but may produce vastly different features.
More precisely, the segmentation of the zoomed-in house
should be a zoomed-in version of the original segmentation.
This is the notion of equivariance to geometric transforma-
tions (such as random crops), which we add in next.

To learn equivariance with respect to geometric transfor-
mations, we sample a geometric transformation (concretely,
random crop and horizontal flip) Gi for each image. Then,
in the above framework, one view uses feature vectors of
the transformed image, while the other uses the transformed
feature vectors of the original:

z
(1)
ip = fθ(Gi(P

(1)
i (xi)))[p] (12)

z
(2)
ip = Gi(fθ(P

(2)
i (xi)))[p] (13)

The other steps are exactly the same. The two views are
clustered separately, and the final training objective is the
combination of the within-view and cross-view objectives:

Ltotal = Lwithin + Lcross (14)

4. Experiments
4.1. Training details

For all our experiments, we use the Feature Pyramid Net-
work [30] with ResNet-18 [20] backbone pre-trained on Im-
ageNet [9]. The fusion dimension of the feature pyramid

is 128 instead of 256. We apply L2 normalization on the
feature map of our network. The cluster centroids are com-
puted with mini-batch approximation with GPUs using the
FAISS library [39, 24]. For the baselines, we do not use im-
age gradients as an additional input when we use ImageNet-
pretrained weight. Except in Table 4, all images are resized
and center-cropped to 320 × 320 during training. We used
the published codes [4, 23] with minimal modification for
the baselines. Other details are in supplementary.

Pre-trained vs random initialization. Prior works [23,
37] train the network from random initialization, but for se-
mantic segmentation it is unnecessary; unlike representa-
tion learning literature [19, 7, 13, 61, 4, 5, 57], our goal is
to segment a given dataset as accurately as possible, and in a
practical scenario one will always choose to initialize from
a pre-trained network such as on the ImageNet dataset [9].
Therefore, we train all models with ImageNet-pretrained
weights, except that in Table 4 we show PiCIE outperforms
all the baselines when trained from scratch as well.

Loss Balancing and Overclustering. As shown in [4, 5,
23], jointly optimizing for a separate set of clusters with
higher number improves the stability of clustering as well
as the accuracy of the prediction. However, in unsupervised
settings hyper-parameter tuning is often infeasible. Thus,
we use the generic approach to balance the loss:

L = λK1
LK1

+ λK2
LK2

(15)

λK1
= logK2

logK1+logK2
and λK2

= logK1

logK1+logK2
where

K1 and K2 are the number of clusters. The intuition is
that the magnitude of the cross-entropy loss depends log-
arithmically on the number of clusters, hence we prevent
the overclustering to overwhelm the gradient flow. We fix
K2 = 100 and add “+H.” in results when applied. Similarly,
due to the imbalance of datasets, the computed clusters will
have largely different sizes; we apply a balance term for
each cluster during the cross-entropy computation.

4.2. Baselines

We describe the baseline methods that we compare
PiCIE to: IIC [23] and modified DeepCluster [4] for seg-
mentation purposes. They are state-of-the-art implicit and
explicit clustering-based learning methods.

IIC. IIC [23] is an implicit clustering method where the
network directly predicts the (soft) clustering assignment of
each pixel-level feature vector. The main objective is maxi-
mizing the mutual information between the predictions of a
pixel and neighboring pixel(s). For controlled experiments,
we use FPN with ResNet-18 same as PiCIE as well as the
first two residual blocks of ResNet-18 (IIC – res12) simi-
lar to the original shallow VGG-like [40] model (details in
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Figure 3: Overall qualitative results on COCO-All [31] (left) and Cityscapes [8](right). Note that we show IIC-res12 for COCO and IIC
for Cityscapes to show the best result of the method on each dataset. Each ground truth label is assigned a color and for each cluster, the
majority label’s color is used. We show some of the color and name matches for better understanding. More in supplementary materials.

supplementary). Following the original paper [23], we used
auxiliary over-clustering loss with K = 45.

Modified DeepCluster. DeepCluster is an explicit clus-
tering method where the network clusters the feature vectors
of given images and uses the cluster assignment as labels to
train the network. To adjust to our problem setup, we mod-
ify the original DeepCluster to instead cluster pixel-level
feature vectors before the final pooling layer. This allows
the network to assign a label to each pixel. However, since
the size of image explodes the number of feature vectors to
cluster, we apply mini-batch k-means [39] to first compute
the cluster centroids, assign labels, and train the network.

4.3. Datasets
COCO. Following [23], we evaluate our model on the
COCO-Stuff dataset [3]. The COCO-Stuff dataset is a
large-scale scene-centric dataset of images with 80 things
categories and 91 stuff categories. We follow the same pre-
process as [23] where classes are merged to form 27 (15
stuff and 12 things) categories. Unless otherwise stated,
we evaluate both things and stuff categories, unlike prior
works which evaluate only stuff.

Cityscapes. We further evaluate our model on the
Cityscapes dataset [8]. Cityscapes is a set of images of
street scenes from 50 different cities. There are 30 classes

Method Classifier Acc. mIoU

No Train Linear 17.45 3.70
No Train Prototype 26.26 8.41
Modified DC Linear 32.21 9.79
IIC - res12 [23] Linear 22.45 4.11
IIC [23] Linear 21.79 6.71

PiCIE Prototype 48.09 13.84
PiCIE + H. Prototype 49.99 14.36

Table 1: COCO-All [23] results. Our method is compared to
clustering methods adapted to semantic segmentation. “+H.” de-
notes PiCIE trained with auxiliary clustering.

of instances that can be further categorized into 8 groups.
After filtering out void group, we have 27 categories. We
train our method as well as IIC and modified DeepCluster
with K = 27 where K is the number of clusters.

4.4. Results

In Table 1, we compare PiCIE with the following base-
lines: No Train, modified DeepCluster [4], and IIC [23].
Unlike the prior works [23, 37] where only stuff categories
are considered, we evaluate the models on both stuff and
things categories to test on more realistic setting. Since the
majority of scene-centric image dataset consists of stuff cat-
egories, our evaluation now faces a severe imbalance prob-
lem. Also, the learning mechanism of IIC assumes local
spatial consistency, which is not often true for things cat-
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Figure 4: Nearest neighbor results for correctly predicted (left) instances and incorrectly predicted (right) instances. The red box indicates
the position of the particular feature vector (size exaggerated). More details in supplementary materials.

Method Partition # Classes Acc. mIoU

Modified DC [4] 44.28 22.24
IIC [23] Stuff 15 33.91 12.00
PiCIE + H. 74.56 17.32

Modified DC [4] 67.06 11.55
IIC [23] Things 12 43.93 13.64
PiCIE + H. 69.39 23.83

Modified DC [4] 32.21 9.79
IIC [23] All 27 21.79 6.71
PiCIE + H. 49.99 14.36

Table 2: Results on different partitions of the COCO dataset.

Method # Classes Accuracy mIoU

IIC

27

47.88 6.35
IIC – res12 29.78 4.96
Modified DC 40.67 7.06
PiCIE 65.50 12.31

Table 3: Cityscapes results.

Method COCO-Stuff

Random CNN 19.4
K-means [38] 14.1
SIFT [33] 20.2
Doersch 2015 [10] 23.1
Isola 2016 [21] 24.3
DeepCluster [4] 19.9
IIC [23] 27.7
AC [37] 30.8

Modified DC 25.26
IIC 27.97
IIC – res12 27.92

PiCIE 31.48

Table 4: COCO-Stuff results without ImageNet pretrained weight
following [23, 37]. First section is from prior works [23, 37] and
the last two sections are from our implementation.

egories due to more dynamic shape variations. We found
that IIC tends to overfit to low-level visual cues since (im-
plicit) clustering is done within a batch and insufficient su-
pervisory signal is present when an instance has dynamic

and complex visual cues. Indeed, in Figure 3 no things cat-
egories are correctly segmented from IIC results. On the
other hand, PiCIE’s novel in/equivariance loss enforces ge-
ometric consistency as an inductive bias to learn high-level
visual concepts, and as shown in Figure 3 PiCIE (“Ours”) is
capable of segmenting both stuff and things categories with
high accuracy. As a result, Table 1 shows that PiCIE largely
outperforms other baselines (+ 17.5 Acc. and 4.5 mIoU). In
Table 3, we test the baselines and our method on Cityscapes
and show similar level of advantages (+ 18 Acc. and 5.3
mIoU). Finally, Table 4 shows PiCIE outperforms the other
models on the benchmark from [23, 37] where the image
size is 128×128, models are trained from scratch, and only
stuff labels are considered for evaluation.

Things vs stuff. In Table 2, we show that PiCIE improves
mainly on things categories (+10 mIoU) while maintaining
better or compatible performance on stuff categories com-
pared to other methods. This indicates that enforcing geo-
metric transformation equivariance was highly effective on
things categories where the instances objects with distinct
shape and boundaries. Furthermore, we show in Table 2
and 4 that PiCIE still outperforms on stuff categories with
or without ImageNet-pretrained weights.

4.5. Ablation Study

In Table 5, we decompose our method to examine which
component affects the performance the most. We gain 5
points by using a non-parametric classifier with cluster cen-
troids. We further gain 3 points with cross-view learn-
ing with invariance transformations. Equivariance learning
adds another 5.5 points, and with auxiliary over-clustering,
we arrive at 49.99 pixel accuracy and 14.36 mIoU.

In Table 6, we test alternatives of different components
of PiCIE. First, one could wonder if our cross-view loss can
be replaced by MSE loss, directly minimizing the feature
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Nonpara- Photo- Geo- Over- Accuracy mIoUmetric metric metric cluster

34.35 9.88
X 39.25 9.82
X X 42.55 9.84
X X 46.97 12.04
X X X 48.09 13.84
X X X X 49.99 14.36

Table 5: Ablation study 1. Our method is decomposed to exam-
ine which components affect the performance the most.

Single MSE eqv. No inv. No balance Accuracy mIoU

48.09 13.84
X 40.56 11.46

X 44.31 11.71
X 44.15 10.98

X X 41.70 9.92

Table 6: Ablation study 2. One or more components in our
method is replaced with alternative options.

vectors of the two views. This leads PiCIE to a suboptimal
solution: 1) the direct distance between two feature vec-
tors can be overwhelmed by low-level or irrelevant signals
whereas cross-view loss directs the gradient to the nearest
centroid, hence only considers relevant signals and 2) MSE
loss requires hyperparameter tuning to be jointly used with
cross-entropy loss, which is infeasible in purely unsuper-
vised setting. Also, one could doubt if two sets of clustering
are necessary; a single clustering with geometric transfor-
mation on the predicted labels can be used as an alternative
to compute the cross-view loss. However, the two versions
of an image contain different information (e.g., zoomed-in
vs full house) that can be mutually beneficial. We test them
all (and more) in Table 6 and the results justify our choices.

4.6. Analysis
Nearest neighbor analysis. In Figure 4, we show the
nearest neighbors of correctly (left) and incorrectly (right)
predicted instances. The nearest neighbors of correctly pre-
dicted segments share close high-level semantics (e.g., per-
son playing tennis, zebra, giraffe, and a building with a
clock). This indicates that intra-class semantics are well
preserved. The incorrectly predicted segments also have se-
mantically and visually close nearest neighbors. For exam-
ple, the first row shows that snow pixels are confused with
sky as the two concepts are visually alike. Such visual am-
biguity is an inherent limitation of unsupervised methods.

Representation quality. In Table 7, we compare the
learned representations by training a linear classifier for
each trained method from our main experiments on COCO-
All. We train with η = 0.001 for 10 epochs with cross-
entropy loss. This allows us to analyze whether the diffi-
culty is from the representation or from clustering. Com-
pared to the unsupervised results from Table 1, baselines

Feature Extractor Normalization Acc. mIoU

Modified DC 50.79 13.76
Modified DC X 48.61 13.30
IIC 51.49 13.26
IIC X 44.50 8.37

No Eqv. 47.73 12.59
No Eqv. X 48.58 10.40
Single Cluster 50.34 12.70
Single Cluster X 49.24 11.47
MSE 52.01 13.16
MSE X 50.61 11.83

PiCIE 54.08 14.11
PiCIE X 54.16 13.89
PiCIE + H. 54.65 14.32
PiCIE + H. X 54.75 14.77

Table 7: Transfer learning results. A new linear classifier has
been trained on top of the learned embedding network.

Initialization Normalization Acc. mIoU C-Acc. C-mIoU

ImageNet 75.48 44.69 55.82 17.36
ImageNet X 74.74 43.44 57.24 31.51

Modified DC 75.25 44.37 55.16 18.43
Modified DC X 75.27 43.82 57.41 30.27
IIC 75.16 44.26 56.07 20.32
IIC X 74.81 44.11 57.30 29.47

PiCIE 75.61 44.40 54.84 17.39
PiCIE X 76.02 44.97 59.77 32.81
PiCIE + H. 75.90 45.60 58.95 18.38
PiCIE + H. X 76.01 45.04 58.94 32.15

Table 8: Re-training results. Trained networks are used as an
initialization for standard supervised training. “C-Acc.” and “C-
mIoU” are clustering results after supervised training. All models
are trained from ImageNet-pretrained initialization.

have a huge performance gap whereas PiCIE has a minimal
gap. This indicates that clustering is where the major dif-
ficulty is and PiCIE gives close-to-optimal clustering given
learned representation. In Table 8, we show that PiCIE can
give better network initialization for supervised training.

5. Conclusion
In this paper, we introduced a new framework for unsu-

pervised semantic segmentation with clustering. Our main
contribution is to incorporate geometric consistency as an
inductive bias to learn invariance and equivariance for pho-
tometric and geometric variations. Our novel cross-view
loss is simple yet highly effective in learning high-level vi-
sual concepts necessary to segment things categories. Our
method is the first unsupervised semantic segmentation that
works for both stuff and things categories without rigorous
hyper-parameter tuning or task-specific pre-processing.
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Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(12), 2010. 4322

[50] O. Wiles, A.S. Koepke, and A. Zisserman. Self-supervised
learning of a facial attribute embedding from video. In
British Machine Vision Conference, 2018. 4323

[51] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsuper-
vised deep embedding for clustering analysis. In Inter-
national conference on machine learning, pages 478–487,
2016. 4322, 4323

[52] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadi-
yaram, and Dhruv Mahajan. Clusterfit: Improving gen-
eralization of visual representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6509–6518, 2020. 4323

[53] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5147–5156, 2016. 4323

[54] Linxiao Yang, Ngai-Man Cheung, Jiaying Li, and Jun
Fang. Deep clustering by gaussian mixture variational au-
toencoders with graph embedding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 4322

4330



[55] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via
simultaneous clustering and representation learning. In In-
ternational Conference on Learning Representations, 2020.
4322

[56] Yunpeng Zhai, Shijian Lu, Qixiang Ye, Xuebo Shan, Jie
Chen, Rongrong Ji, and Yonghong Tian. Ad-cluster: Aug-
mented discriminative clustering for domain adaptive person
re-identification. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 4323

[57] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and
Chen Change Loy. Online deep clustering for unsupervised
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6688–6697, 2020. 4322, 4323, 4325

[58] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi,
Honggang Zhang, Jun Guo, and Zhouchen Lin. Self-
supervised convolutional subspace clustering network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5473–5482, 2019. 4322

[59] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He,
and Honglak Lee. Unsupervised discovery of object land-
marks as structural representations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2694–2703, 2018. 4323

[60] Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, and Yefeng
Zheng. Deep image clustering with category-style represen-
tation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XIV, volume 12359 of Lecture Notes
in Computer Science, pages 54–70. Springer, 2020. 4322

[61] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In The IEEE International Conference on Computer Vision
(ICCV), October 2019. 4325

4331



PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance
in Clustering – Supplementary Materials

Jang Hyun Cho1 Utkarsh Mall2 Kavita Bala2 Bharath Hariharan2

1University of Texas at Austin 2Cornell University

S1. More experiment details
Network architectures

For every method, we used the Feature Pyramid Net-
work [11] to effectively encode representations from mul-
tiple scales. However, we only use pixel-wise randomly
initialized linear (1 × 1 convolutional) layer for each level
of the intermediate feature maps from ResNet-18 [5]. As
noted in the main paper, we projected each of the feature
maps to 128 dimensions instead of 256 from the FPN. Af-
ter the linear projection, we directly bilinear-upsampled to
1/4 scale of image resolution and element-wise summed to
get the final 128 × H ×W representation without the last
3 × 3 convolutional smoothing layers (H = W = 80 dur-
ing training with 320 × 320 images). Note that this is a
simplified version of the semantic segmentation branch of
Panoptic FPN [8], a simple application of FPN to segmen-
tation task. At the end, the only added parameters from
ResNet-18 are 4 1× 1 convolutional layers.

IIC For controlled experiments, we changed the net-
work architecture of default IIC from the original shal-
low VGG-like model to FPN with ResNet-18 as described
above. Following the original paper [6], we used auxiliary
over-clustering loss: We kept the original k = 45 since
the difference was minimal between k ∈ {45, 100, 250}.
Also, the original IIC objective has a hyper-parameter λ
which controls the “strictness” of the uniform distribution
of clustering constraint. This could potentially alleviate
the problem that IIC faces. In Table 1 we tested with
λ ∈ {1, 1.25, 1.5, 1.75, 2, 3} on COCO-All and λ = 1
performed the best, hence we kept λ = 1 in all our ex-
periments. Similarly, we tested different learning rates
η ∈ {0.1, 0.01, 0.001, 0.0001} and η = 0.0001 was op-
timal. Both of these λ and η coincide with those in the
original paper.

IIC-res12. We discovered that the shallow version of
IIC performs better qualitatively on the (processed) COCO
dataset [6]. This is because a shallow network tends to
overfit to low-level visual signals such as color and texture

due to its narrow receptive field. Since the dataset is pre-
processed to reduce images that have too many pixels in
the things categories, which are often visually more com-
plex, perhaps the shallow IIC can be more effective for solv-
ing simple background segmentation compared to deep IIC.
Therefore, we tested both versions. Note that the shallow
VGG-like network used in the original IIC paper is unable
to load ImageNet-pretrained weight, hence we instead used
the first two residual layers res1 and res2 of ResNet-18 [5]
as an alternative. They have nearly the same number of pa-
rameters and in the main paper, Table 3, we show that IIC
with res12 achieves similar accuracy on the original COCO-
Stuff benchmark (27.7 and 27.92) [6]. Similar to IIC, we
apply auxiliary over-clustering with k = 45.

Modified DC. Since DeepCluster [1] was originally de-
signed for the task of image clustering, we modified the
framework to fit the task of segmentation (pixel-wise clas-
sification). The network alternates between computing
pseudo-labels and training. As mentioned in the main pa-
per, the representation is pixel-level by removing the fi-
nal pooling layer. This makes storing the feature vectors
of the entire dataset infeasible, so we perform mini-batch
k-means to first estimate cluster centroids, assign pseudo-
labels, and train the network with the pseudo-labels. The
same set of transformations as PiCIE is used on each im-
age during training. Note that similar to IIC, image gradi-
ent is not concatenated in the input when initialized from
ImageNet-weight. We do not apply over-clustering since
the model without over-clustering performed the best com-
pared to k ∈ {100, 250, 1000, 2500}.

Datasets

For training modified DC and PiCIE, we used simple
pre-processing: resizing and center-crop to 320 × 320. For
IIC, we used the original paper’s pre-processing with their
published code.

Transformations. For photometric transformations, we
randomly applied color jitter, gray scale, and Gaussian
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λ 1.0 1.25 1.5 1.75 2.0 3.0

Acc 21.8 17.6 16.8 15.6 16.4 16.6
mIoU 6.7 7.0 6.4 6.0 6.5 6.5

Table 1: IIC with different λ.

blur. Random jitter consists of jittering brightness, con-
trast, saturation, and hue. All jittering transformations
are applied with probability p = 0.8 and control factors
0.3, 0.3, 0.3, 0.1, respectively. Random gray scale is ap-
plied with probability of p = 0.2. Random Gaussian blur
is applied with probability of p = 0.5 and radius randomly
chosen: σ ∈ [0.1, 2]. For geometric transformations, we
applied random crop and random horizontal flip with crop
factor r ∈ [0.5, 1] and flipping probability p = 0.5. In order
to ensure that the same transformations are applied during
clustering and training, we first sample transformations dur-
ing clustering and store them in a list to re-use during train-
ing.These hyper-parameters are a standard choice adopted
in many other works [4, 2, 3].

Training

Clustering. The cluster centroids are computed with
mini-batch k-means with GPUs using the FAISS library [7].
The initial cluster centroids are computed with 50 batches
with batch size of 128, then the centroids are updated every
20 iterations. For every other hyperparameters related to
clustering, we followed Caron et al. [1]. Since this process
is highly optimized, it takes about 20 minutes to prepare
the pseudo-labels for training every epoch on the COCO
dataset, which makes less than half for training the network
in total compared to IIC using the published code.

Training details. We trained every method with 10
epochs when trained with ImageNet weight initialization,
and 20 epochs when trained from scratch. For modified
DC and PiCIE, we used ADAM optimizer with learning
rate η = 1 × 10−3, β = (0.9, 0.999) and weight decay
0. For IIC, their original hyperparameter setting was better,
so we kept their setting (η = 1 × 10−4). For the trans-
fer learning and supervised training experiments, we used
η = 1 × 10−3, β = (0.9, 0.999) and weight decay 0, con-
sistent with the setting from the main experiments. For the
final objective, we applied weighted cross-entropy loss with
per-cluster weight is balanced with the size of each cluster.
We simply average the cross and within losses.

Evaluation metric. For evaluating our model, we fol-
lowed the evaluation metric from [6] with pixel accuracy
after Hungarian-matching [10] the cluster assignments to
the ground truth labels. We also report mean IoU to ac-
count for false positives and negatives. In Table 2 of the
main paper, we compute the accuracy and mIoU from the
same model trained on COCO-All (K = 27), but evaluated

by only accounting for the labels in each partition. This
can be done efficiently by computing the confusion matrix
of the all classes K = 27 first and partitioning the matrix
accordingly. In Table 3 of the main paper, we closely fol-
low the experiment setting of [6]: the image resolution is
128× 128, the images are pre-scaled and constant-padded,
and K = 15 which means only stuff categories are consid-
ered for evaluation.

Visualizations

For producing consistent visualizations, we used major-
ity vote for each obtained cluster. That is, we first assigned
color values to each ground truth label and for each ob-
tained set of clusters, we assign the color of the majority
class. In the main paper, notice that we showed IIC-res12
for COCO and IIC for Cityscapes. We included the version
that had better qualitative results. We hypothesize that since
COCO was preprocessed to include more stuff categories, it
is easier for the shallow network which overfits to low-level
cues (e.g., color and texture) to segment images well since
the majority of stuff instances are visually simple. For the
nearest neighbor result, we first chose successful and fail-
ure results from the large set of randomly selected images
(results below), picked a pixel coordinate of interest, and
computed the nearest neighbor on the entire validation set
of COCO-All. Then, we extracted the images that the neigh-
bors belong to and visualized.

S2. More results
In this section, we show more qualitative results ran-

domly chosen for both IIC and IIC-res12, as well as modi-
fied DC and PiCIE.

Robustness on Color and Geometric transforma-
tions

We show that PiCIE successfully learns photometric
invariance and geometric equivariance by evaluating our
model with test-time augmentation. We apply the same set
of photometric transformations (color jitter, Gaussian blur,
and greyscale) and geometric transformations (horizontal
flip and random crop) and report the results in Table 2.

S3. Analysis
We discuss a few possible directions for future study.

Note that MDC stands for modified DeepCluster.

Visual ambiguity. As shown in visualization, visual am-
biguity leads to mis-classification of certain classes. Snowy
ground is often confused with either sky or water, and grass
on a flat ground is confused with ground. The core problem
is twofold: First, the classification of the segment masks
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Brightness Contrast Saturation Hue Grayscale Gaussian blur Horizontal Flip Random Crop Accuracy mIoU

48.09 13.84
X 47.98 13.59

X 48.08 13.63
X 48.09 13.64

X 48.09 13.65
X 47.98 13.63

X 48.03 13.59
X X X X X X 47.42 13.39

X 47.61 13.71
X 48.08 13.63

X X 47.60 13.76
X X X X X X X X 46.28 13.16

Table 2: We evaluate PiCIE with test-time augmentation where each transformation follows the same hyper-parameters as training, when
applied. The result shows that PiCIE is robust to photometric and geometric transformations during inference.

are done with cluster centroids, which follow the “major-
ity trend.” For example, the majority of “ground” instances
is not covered by snow, making the confidence low. Sec-
ond, the visual similarity does not always correlate to the
semantic similarity, and such discrepancy leads to confu-
sion. “Snow ground” is often texture-less and mono-colore,
similar to “sky” or ”water.” This is an inherent limitation of
unsupervised learning methods.

Co-occurrence. Some foreground classes such as “boat”
or “airplane”, only occur surrounded by “water” or “sky.”
Since stuff categories have far more pixels, they are often
subsumed in the co-occurring background classes. We hy-
pothesize that this effect will be mitigated if the dataset had
more images of stand-alone “boat” or “airplane.” or with an
effective way to contrast between the two entities such as
using either a generic or a learned boundary detector, which
can be a future work.

Boundary precision. Since we do not have any supervi-
sion to train for precise boundaries, many foreground in-
stances are segmented with over-confidence. Pixels around
boundaries are hard samples to correctly predict. Using a
generic edge detector or post-processing through iterative
refinement such as CRF [9] may improve the result, which
is outside the scope of our project.
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